SOME EFFECTS WHICH ARISE IN CONNECTION
WITH THE EXPLOSIVE SQUEEZING OF A VISCOUS
CYLINDRICAL SHELL

N. I. Tatyushkin and Yu. A. Trishin UDC 532.52+532.503.2

The process of the collapse of a cylindrical metal shell to the axis of symmetry under the action of
explosion products has been discussed in [1-3]. The model of an ideal incompregsible fluid has been taken as
the basis for calculations of a collapsing shell, Comparison of the results of a numerical solution of the
problem of the convergence of ideal incompressible fluid to the axis of the shell with experimental data obtained
in connection with photography by an x-ray pulse apparatus of the collapse process of metal tubes surrounded
by a layer of explosives shows that the calculated curves of the time dependence of the shell radius are in
good agreement with the experimental times up to a certain point. An appreciable divergence begins at the
end of the process of shell collapse. The divergence with experiment was overcome by using the model of a
viscous incompressible fluid for the shell material. In addition, this model explained a number of physical
effects which were first obtained experimentally: the halting of the shell upon reaching an inner surface of
some critical radius not equal to zero, the Mexplosive® vaporization of the shell due to the rapid conversion
of all the kinetic energy of the shell into heat due to the action of viscous forces, and the dynamical stability
loss of the shell. The elastoplastic model is not able to explain these phenomena which accompany the collapse
process of a cylindrical shell.

Thus, the viscosity of actual shells is evidently the principal factor limiting accumulation (in the sense
of a collision of the inner surface on the symmetry axis) in shells with cylindrical symmetry. But at the same
time it is possible to speak of another kind of accumulation in the model discussed below — the accumulation
of thermal energy in the layers adjacent to the inner surface, which, in turn, is limited by phase transitions
of the shell material. A procedure for determining the viscosity coefficients for metal and other condensed
materials is proposed on the basis of an analysis of the inertial convergence of a cylindrical shell.

A suggestion is made in this paper on the nature of the high-velocity cumulative jet from cylindrical
cumulative casings and about the converging cylindrical detonation front.

81. Let there be a cylindrical shell of a viscous incompressible fluid surrounded by a layer of com-
pressed gas. The initial parameters of the gas are as follows: pressure py, density py, sound velocity in the
gasa g, and layer thickness Ag; those of the shell are as follows: density of the material py, dynamic viscosity
coefficient u, inner radius Ry, and outer radius Ryp. There is a vacuum inside and outside the layer of com-
pressed gas. The shell will start to collapse under the influence of the expanding gas.

Assuming that the gas surrounding the cylindrical shell is the product of the instantaneous detonation
of explosives with y =3, it is possible to write [1-4]:

Do = 3 pOD_ = 3 poa(h 0= expl (1-1)

where D is the detonation velocity of the explosives and pexpl is the initial density of the explosives.

The condition of adiabaticity gives the following relationship for the thermodynamic parameters of the
gas:

0 = polilag, p = pPy(p/Po)® = polala,)®. (1.2)

The equations of motion and continuity describing the one-dimensional motion of the gas with cylindrical
symmetry are transformed, with Egs. (1.2) taken into account, into equations containing the mass velocity u
and the speed of sound a as the desired functions:

duldt - udulor + az?a/ar = 0, daf at + udaldr 4 aduldr + aulr = 0. (1.3)

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 99-112,
May-June, 1978. Original article submitted May 13, 1977.

362 0021-8944 /78 /1903- 0362 $07.50 ©1978 Plenum Publishing Corporation



&-" ¥
m % "2
¥ W}
11 -
Sa | 3
S S
T
10 S ; SN
:N\\ -~
AN b
9 Wi —
o
\\" '\‘\ »
N NSNS \4L
8 R \\ N TR
—-’-*-I—“—p—--—r- —t— | e et 8 —ly m— —-l—-¢-—-o-—#.>—p———.—-
7
o 2 4 & 8 typisec
Fig. 2

Let us consider the r—t diagram of the collapse process of a cylindrical shell (Fig. 1). The trajectory
of the inner and outer shell boundaries are denoted by R(t) and R,(t), respectively, X,(t) is the leading front of
a rarefaction wave propagating to the left from the gas—vacuum boundary, and X,(t) is the leading front of a
rarefaction wave propagating to the right and arising on the moving shell. The curves X; and X, have recti-
linear sections up to their intersection point[Ryy + Ay/2, A¢/ (25)]. The r axis and the rectilinear sections
of the curves X; and X, restrict the region 0 of unperturbed gas, where u=0 and @ =a,. The gas—vacuum
boundary X3(t) is a straight line, since not a single perturbation can overtake this boundary (for example, sce
[5]). The displacement velocity of this boundary is equal to the gas outflow velocity into the vacuum, which
for v =3 is equal to the initial speed of sound in the gas. Thus, the region of moving gas in the r—t diagram
is restricted by the shell line Ry(t), the rectilinear sections of the leading fronts of the rarefaction waves X,
and X,, and by the line X; of gag dispersion into the vacaum. In its turn, this region can be divided into
several parts [see Fig.1]: 1) the region of gas motion in the rarefaction wave which arises on the cylindrical
shell; 2) the region of gas motion in the rarefaction wave which arises in connection with gas dispersion into
the vacuum; 3) the region of interaction of the rarefaction waves generated. The region 3 is divided into two
parts by the line X(t): to the left of it (region 3') the gas velocity is directed toward the shell, and to the right
(region 3"), the gas velocity is directed toward the gas—vacuum boundary. The mass velocity of the gas is
equal to zero on the line Xq.

For the cylindrical shell itself relations expressing the law of mass conservation and the continuity
equation for an incompressible fluid are satisfied:

R (t) — R*(t) = R%, — R} = C = const; (1.4
Ry(®R,() = RORE) = rv. (1.4m)

The initial conditions are obvious:
u(r, 0) = Ry(0) = 0, a(r, 0) = a, Ry(0) = Ryy, R(0) = Ro, X4(0) = Ry -+ A,. (L.5)
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Fig, 8

Let us write out the conditions at the boundary of the region of moving gas:
t X, (), u=a, a=0;
at Xy (), Xolt) for 0t u=0, a=ay; (1.6)

= 24y

at R (1), u= ffl, a=ua.

In addition, a relation relating the acceleration of the shell to the parameters of the ghell and the gas is
satisfied on Ry (t) which it is possible to derive from energy considerations.

Let us consider the conscrvation law of mechanical energy for some volume V of a continuous medium,
which in the general case has the form
L (02t av 4 { Dyyoyiav = [wias, (1.7)
v v 5
where p is the density of the medium, vj is the velocity vector of a material point, Dj; is the tensor of the

deformation rates, o'jj is the stress tensor, S is the surface bounding the volume V, and ti(n) =0 jin;j is the
stress vector at the small area dS with normal n.

Equation (1.7) establishes a relation between the rate of variation of the total mechanical energy of the
medium and the strength of the surface forces. Let us apply Eq. (1.7) to the one~dimensional axisymmetric
motion of a cylindrical shell converging to the axis under the influence of the gas pressure p on the outer
surface of the shell (the gas pressure on the inner surface is p=0). The shell is an incompressible Newtonian
fluid for which:
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035 = —pdy + 2uDy;

In the case of cylindrical symmetry Dpy=9v/0r, D¢¢=v/r, and the remaining Djj=0. In addition, Djjo ji =
—pDi; + Z;LD-ljDij = Z#DijDij, since Dij =0 by virtue of p;=const and the continuity equation {1.4"). With the
continuity equation (1.4") taken into account we have

D05 = 2ul{0v/or)® + /)] = 4uR2R3/r, (1.8)
Then Eq. (1.7) for unit length of the shell with (1.4" taken into account, takes the form

d . > .
| e (R0 2]+ ?—F‘;‘L_ — 2xREp, (1.9)

where C=R}—-R%*= const.

Differentiating the first term of Eq. (1.9) with respect to the time and using Egs. (1.1) and (1.2}, we .
finally obtain

Vs - -
iRy 1 (CR% 2vCR, poa"’{) R} (1.10)

* where v =u/p, is the kinematic viscosity. Equation (1.10) is the boundary condition for the region of moving
gas and is satisfied on the curve Ry(t).

The solution of the equations of one-dimensional motion of a gas with cylindrical symmetry (1.3) with
the initial {1.5) and boundary conditions {1.4", {1.4™), (1.8), and (1.10) was constructed numerically by the
modified method of characteristics described in[1-3). The agreement of the calculated curves of the time
dependence of the radius of the cylindrical shell with the experimental results was achieved by the choice of
the value of the kinematic viscosity of the shell material. For copper the value of the kinematic viscosity
turned out to be equal to v=0.7- 10* cm?/sec, which is less than the kinematic viscosity cited in [6].

The calculated dependences of the radius of a collapsing copper cylindrical shell (Ry=9 mm, Ry,=11.7
mm, and p;=8.9 g/cm?) under the action of alayer of explosives - an alloy of Trotyl with Hexogen, TH 50/50
(pexpl = 1.65 g/cm3, D=17.5 km/sec, and ay=4.5 km/sec) are presented in Fig. 2. The solid curves are plotted
for a viscous shell with v=0.7+10* ¢cm?/sec, and the dashed curves are for the model of an ideal incompress-
ible fluid (v=0). The curves 1-3 refer to different thicknesses of the explosives on the outer surface of the
cylindrical shell (45=8.2, 5.9, and 2.4 mm, respectively). The experimental results are plotted as points.
The good overlapping of the experimental points by the calailated curves over the entire collapse process
for the chosen kinematic viscosity coefficient and the appreciable discrepancy of the experimental points
with the model of an ideal incompressible fluid at the end of the process argue in favor of the viscous incom-
pressible fluid model.

82. Let ug consider the inertial collapse of a viscous cylindrical shell in which the gas pressure both
on the outer and on the inner shell surfaces is equal to zero, and R =Ry, R;=Ry;, and R=Rgq at t=0. In this
case from Eq. (1.9) we have

d : Ry 4 Re
< [nm (RR)In T}] = __—“Pg%c i (2.1)

where E=mp,RR)%n (Ry/R) is the kinetic energy per unit length of the cylindrical shell,
Integrating (2.1) on the condition that E =E, at R=R;, we obtain

VE=VE,—4v V;LE(]/—III % — ]/ln %;—")
Equation (2.2) indicates that R=R, = 0 occurs when E=0:
Ry=F, ) Buo/By)—1 (2.3)
Y (RRY”— o

where m = 2[1 + (E‘%;l’_l)]z =2f1 + (RTe)]Z. The stopping radius R, of the shell at a certain distance

from the symmetry axis is very small in the general case upon detonation of the explosives in contact thh
the shell due to a very strong dependence on the Reynolds number, which is defined in the form Re = Ro|Ro|/v.

(2.2)
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Actually, the stopping radius is found to be equal to ~10™% cm for a copper shell (¥=0.7-10* cm?/sec) with an
inner radius of 50 mm and a thickness of 5 Tam in the case of an initial collapse velocity of Ry=1 km/sec. It
is clear that it is impossible to detect such a value by any instrumental measurements. But the stopping
radius Ry may prove to be appreciable for cylindrical shells for which Re—~0. If we now take a copper shell
having the same initial collapse velocity of 1 km/sec but a thickness of 0.5 mm and Ry=5 mm, then R, turns
out to be equal to 1.23 mm, ard it is possible {o record it by x-ray pulse photography.

It can be shown that if there are dissipative forces in the shell, then it is possible to obtain the stopping
effect by the action, for example, of the resistive forces of the shell material. The case of the inertial con~
vergence of an elastoplastic cylindrical shell toward the symmetry axis has been theoretically investigated in
[7], and a minimum initial velocity Ro* , has been found at which the shell collapses. The initial velocity -Ro*
turns out to be equal to 160 m/sec for a copper cylinder with Ry=9 mm and Ryy=10 mm whose yield point is
0g=6.85°10% dyn/cm?. In the case of the explosive squeezing of 2 copper shell at an initial velocity R, of the
order of 1 km/sec and higher, the elastoplastic model is not able to explain the stopping effect. The loss of
energy in overcoming the plastic resistance of the material amounts to 2.5% in all of the initial kinetic energy
of the shell in the case of Ry=1 km/sec.

It is possible to treat the inertial collapse of an empty spherical cavity of radius R in an unbounded
incompressible viscous fluid in a similar formulation. In this case the continuity equation has the form v=
RR2/r?, and the components of the deformation rate tensor Dyy=98v/37, Dy =Dpyg=v/r, and the remaining
D;j=0 and D joj; = 24 D;3D;j= 12pR*R*/rf. Therefore, one can write Eq. (1.7) in the form

dE/dt = —16nuR°R, (2.4)

where E= 27Tp1R3i{2 is the total kinetic energy. Eliminating the time and integrating (2.4) with the obvious
initial conditions, we obtain

VE = VE, — 8V Zap,(V Ro — VR). (2.5)

In the case of inertial convergence to the center of the spherical cavity both collapse to zero radius and
the stopping of the cavity at a certain distance from the center can occur in a viscous fluid. This depends on
the initial conditions. Let us find the function R{t) from Eq. (2.5) in quadratures

‘o f RY%4R (2.6)
LV T (B + 8v) —sv VR

13

We will consider three cases: 1) RgRqy+ 8v=0, i.e., Re=Ry|Rol/» =8; then we obtain R§—R%= 16wt from (2.6),
whence it follows that the cavity collaps_es to zero radius in the finite time t, =R%/16v, and R—0, R=—8v/R—
- and E=1287p»®R—0 as R—0; 2) ReRy+ 8¢ >0, i.e., Re< 8; then we obtain from (2.6) that the denominator
of the integrand is less than zero when R~Ry, and it is greater than zero when R—0; this fact indicates that
for R4 =(1—Re/8)%R, the moving cavity stops, E=0, and the stopping time is equal to infinity; 3) RR,+ 8v< 0,
i.e., Re> 8; then the denominator of the integrand of Eq. (2.6) is negative during the entire time of the con-
vergence of the cavity, collapse occurs, and E = 2mp 1V2(Re—8)2R0 and R ~R™3/2——w ag R0, just as in an ideal
incompressible fluid.

The problem of the collapse of a spherical bubble in a viscous liquid hag been discussed in a somewhat
different formulation in [8]. Here the pressure p, under whose influence collapse of the cavity occurs ig
specified at infinity, i.e., in a formulation similar to Rayleigh's problem of the collapse of a spherical cavity
in an ideal incompressible fluid. It is also found in [8] that the nature of the motion depends on the value of

the Reynolds number, which is now defined as Re = -}%LV%’-. When Re>Re*, where Re* is some critical
1

number, collapse occurs, and the velodty of the cavity boundary R ——< as R—0 according to the same law as
in Rayleigh's problem. When Re< Re*, the collapse of the bubble occurs slowly in an infinite time. In the
intermediate case when Re=Re*, the bubble collapses in a finite time, and the velocity R grows without limit
as R—0, but more weakly than R™!, Numerical integration of the equations in [8] gives a value of Re* =8.4 for
the critical Reynolds number.

And so in contrast to motion with central symmetry, collapse to zero radius never occurs in the case of
the inertial motion of a cylindrical shell of viscous fluid. It is also evident from Eq. (1.9) that if the pressure
of the detonation products which acts on ‘the outer surface of the shell drops to zero in a finite time, then
collapse of the shell does not oceur — it is stopped, and the inner surface of the shell never reaches the axis.
Thus, the viscosity of the material of actual shells can be the principal cause, completely eliminating accumu~
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lation in devices with cylindrical symmetry. This fact must be taken into account in a number of physical
devices which use the effect of the collapse of cylindrical shells (for example, magnetic course generators
and so on).

Experimental verification of the stopping of the cylindrical shell at a certain distance from the symmetry
axis in the case of explosive squeezing was carried out with x-ray pulse equipment. Copper tubes surrounded
on the outside by a layer of explosives (TH 50/50 alloy) were used in the experiments. The detonation wave
slips along the outer surface of the shell. Due to the large difference in the velocities of the detonation wave
(7.5 km/sec) and the radial collapse (0.5-1.5 km/sec) one can consider the collapse process of the tube to be
one-dimensional with cylindrical symmetry to high accuracy. The use of a sliding detonation wave permits
recording in a single frame various temporal stages of the collapse of the cylindrical shell.

If one converts to a coordinate system attached to the front of the detonation wave, then it is clear that
the cross sections of the tube farther from it will be in later stages of collapse, since t=x/D, where x is the
distance from the detonation wave front to the tube cross section in question and D is the velodity of the
detonation wave. The use of this procedure permitted clear recording in the experiments of the stopping of
the inner surface of the shell at a certain distance from the axis of symmetry.

The collapse process of a copper tube (Ry=9 mm, Ry;=10 mm) under the action of a layer of explosives
is presented in Fig. 3a, b; the detonation wave front is moving from above to below. The x-ray photographs
of the collapse process of the tube in Fig. 3a differ from the x-ray photographs of Fig. 3b in that in the first
case an earlier stage of the collapse is presented and with a smaller initial velocity (ROm 1 km/sec) than in
the second case Ry 1.6 km/sec). The times are measured from the instant the explosives are fired by a
detonator and are 8.7 and 14.3 usec, respectively, for the first and second frames of Fig. 3a and 13.4, 16.3,
23.2, and 33.5 usec for the sequence of frames of Fig. 3b. It is evident in the second frame of Fig. 3a and
the first frame of Fig. 3b that the tube, having attained a minimum inner radius not equal to zero at some
cross section, then expands. Dispersal of the shell starts in the next frames of Fig. 3b after the stage with
minimum radius, and in the later frames the dispersal is accompanied by fracture, loss of continuity, and
the appearance of instabilities which distort the axisymmetric shape of the dispersing shell.

Striving to obtain a stopping radius R, large enough for high measurement accuracy imposes a restric-
tion on the Reynolds number Re=Rg|Ry|/v. For example, for shells for which Ry> 1.1 Ry, it follows from
Eq. (2.3) that one should have Re = 20 if it is necessary to have a stopping radius of the inner surface of the
order of 0.1 Ry. One can determine the viscosity of metals and other condensed materials from Eq. (2.3) and
measurements on photographs (see Fig. 3a, b) of the initial velocity i{o and the inner stopping radius Ry :

/ In (R%O_}:g—l‘ 1\) -

o Bal Rl ]/ R 4

4 21n Ao

R,

For copper at deformation rates of ~ 10° sec™! the value of the kinematic viscosity coefficient is found to be
equal to (1.5-1.8) - 104 cm?/sec, which exceeds the value of the kinematic viscosity from the solution of the
problem of explosive squeezing of a cylindrical shell. The reason for this discrepancy evidently consists of
the fact that all the kinetic energy changes into heat by the instant of stopping. The shell layers adjacent to
the inner surface are heated especially strongly. Vaporization and dispersion of the inner layers by the axis
can begin just before their stopping, and the stopping radius recorded on the x-ray photograph will have an
exaggerated value. The inner channel frequently turns out to be smeared.

83. Heating up of a viscous cylindrical shell occurs upon its collapse to the axis as a result of the
dissipation of kinetic energy.

Dependences obtained from (2.2) are presented in Fig. 4 of the dimensionless quantities — velocity of the
inner radius R/R, and the kinetic energy E/E; — as a function of the dimensionless inner radius R/R, for a
copper shell for which Ry=9 mm, R;y=11.7 mm, and v=0.7"* 10 cm?/sec. Curves 3 correspond to an initial
velocity Ro=1 km/sec, curves 2 to R0= 2 km/sec, and curves 1 to Ro=3 km/sec. It follows from consideration
of these curves that the fraction of the kinetic energy converted into heat is small right up to values R/Ry=
0.5-0.7, and the collapse velocity is almost unchanged and equal to the initial value. Significant liberation of
heat is observed prior to the stage of shell stopping, and all the kinetic energy changes into heat at the instant
of stopping.
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Let us estimate the temperature and its distribution with respect to shell thickness as a function of the
time. We will again consider inertial motion. We obtain from Eq. (2.2) the equation of motion for the inner
radius R of the shell:

. R, ]/_m% (Y B ]/m%_). (3.1)
R Vln-}-%

The strength of the dissipation forces per unit volume is, according to (1.8),

_de’ E_fzz, (3.2)
ri

where r ig the independent variable (R=r=R,) and ¢! ig the dissipation energy per unit volume. We will

follow a particle located in the interior of the cylindrical shell and having an initial radius ry(Ry=ry=Ryp.

It follows from the mass conservation law (1.4") that r3(t) =R%(t) + r}—R}, and Eq. (3.2) for a moving particle

with initial coordinate r; takes the form

ds ‘___ 4 R2}22 (3-3)

& ARy

where ¢ is the specific dissipation energy converted into heat, and € =0 in Eq. (3.3) at t=0. Integrating (3.1)
and (3.3) together, we find the temperature increment in the adiabatic approximation for the particle T, to be

: 2py2
s _min
% (2 rp— Ry

where ¢ is the specific heat of the shell material.

For numerical calculation the shell was divided into 10 equal intervals with respect to thickness at the
initial time. Thus, the calculation was performed for 11 points, two of which belong to the inner and outer
surfaces of the shell. The calculations of the temperature distribution in the shell (without taking phase
transitions into account) were performed for copper, with ¥=0.7+104 cm?/sec and ¢=3.82+ 10% ergs/(g * deg).

The resulis of the calculation of the temperature distribution in a copper shell with respect to its thi ck-
ness is shown atvarious times in Fig. 5. The initial shell parameters are as follows: Ry=10 mm, Ryy=11 mm,
and Ry=1 km/sec.

The temperature distribution with respect to thickness of a copper shell (Rg=9 mm, Ryy=11.7 mm) is
given in Fig. 6 at the instant at which the inner surface of the shell attains a radius of 1 mm; the curves refer
to different initial shell velocities and to different times. The temperature values obtained are rather high,
and the temperature of the inner surface and the shell layers adjacent to it will be still higher by the stopping
time in the viscous fluid model used here. If one compares Figs. 4 and 6 (both are for a shell with Ry=9 mm
and Ryy=11.7 mm), then by the time the inner radius of the shell attains a radius of 1 mm the "rapid" shell
has more than 60% of its kinetic energy left, and the other two have 50% and about 20%.

The calculation of the temperature of the inner surface of the "slow® shell Ro= 1 km/sec, which is
carried out to a radius R=0.0715 mm, which is almost equal to the stopping radius R« =0.0708 mm, shows
that the temperature rises to 13.4+10*°K at the time t=8.16 usec, and the velocity of the inner surface is
equal to 40 m/sec at this time. A temperature of several tens of thousands of degrees, for example, is
attained in condensed media only upon the passage of very strong shock waves. In the case of shock com-
pression of lead by a factor of 2.2 the material behind the front is heated up to a temperature of 26,400°K [5],
the pressure behind the shock front is higher than 4+ 103 kbar, and the thermal pressure amounts to 32% of the
total.

Let us imagine the order of magnitude of the thermal pressure if heating of a copper shell takes place
with constant volume, which is valid, since a heating up by AT=3.4- 10*°K occurs during a time appreciably
legs than 2 pusec (see Fig. 6). We will use the relationship which relates the value of the thermal pressure to
the thermal energy:

pr = I'(V)ep/v = F(W)eyT/v = I'(v)eyTlvy,

where T is the Gruneisen coefficient, cy is the specific heat at constant volume, and vi=1/p, is the specific
volume under normal conditions. For copper at T=3.4- 10%°K the value of the pressure turns out to be higher
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than 3~ 10° kbar. Such high pressures create a shock wave in the shell material which propagates toward the
outer layers and forces the shell to expand. Of course, the model under discussion cannot take account of

all the complexities of the convergence process of actual metal shells toward the axis, but a number of physical
effects described above are qualitatively explained.

The process of one-dimensional convergence of shells with cylindrical symmetry has been realized
experimentally in the device shown in Fig. 7a. The cylindrical shell 6 being investigated (R;=10.5 mm)
surrounded by a layer 5 of TH 50/50 explosive material 5 mm thi ck was enclosed in a conical Duralumin
generator 4, which excited a cylindrical detonation wave simultaneously over the entire surface of the explo-
sives 5 along a length of 60 mm. The firing of the explosive layer 3, which accelerates the generator, is
carried out by the detonator 1. Separation of the explosives away from the detonator towards the explosives
layer 3 is carried out by means of an explosive layer surrounding the inert insert 2 made of a plastic cone
and a steel disk in the base of the cone. The process of the collapse and dispersion of a copper tube (Ry=10
mm) is shown in Fig. 7. The initial velocity is of the order of 1.7-2 km/sec. The times are measured from
the instant of firing and are 13, 19, 21, and 27 usec for the sequence of frames- shown.

A photograph is shown in Fig. 8 of the dispersion of a thicker iron tube (R3=9.5 mm) 27 usec after the
device shown in Fig. 7a was fired. The thinner copper tube disperses into layers perpendicular to the
symmetry axis by this time. The dome-shaped feature in Fig. 8 appeared due to an additional metal ring
inserted into the lower part of the tube for a complete guarantee of the free outflow of air from the inner
cavity during the process of shell collapse. A loss of stability of the initial shape of the cylindrical shell is
noted in the expansion stage in both photographs (see Figs. 7 and 8). One can assume that this stability loss
of the shell shape is caused by a rapid heating of the metal at constant volume already in the collapse stage,
ag a result of which axial forces appear which exceed the critical Eulerian force. Then the shell shape is
determined by dynamic stahility loss, which was first analyzed in [9] for elastic rods and shells.

Due to the unloading from the end surface of the explosives 5, which accelerates the shell being investi-
gated, the collapse process of the tube at some section is far from uniform with cylindrical symmetry. The
lower part of the tube of Fig. 7c and the upper parts of the tube of Fig. 3a, b collapse at some variable angle
towards the symmetry axis, At the same time conditions for the collision of shell elements may be realized,
which results in the formation of cumulative jets, We note that the ideal incompressible fluid model always
predicts the formation of compact cumulative jets, whereas it is known that jets are formed under definite
collision conditions, It is necessary to discuss the compressibility of the shell material in order to clarify
the criterion for jet formation. The effect of compressibility on the formation of a jet is discussed in [10].
The flow pattern is the symmetrical collision of two jets at an angle 28 for a glancing collision of two plates in
the coordinate system attached to the line of collision of the plates, It is known from gasdynamics that for a
stream impinging on a wall at an angle g there exists a maximum angle By, 4%, which when exceeded results in
the absence of an associated shock wave,

Thus, a flow without a cumulative jet is possible only when an associated shock wave is located at the
point of collision. A cumulative jet is always formed in the case of an outgoing shock wave. This means that
if the velocity of the incoming stream is subsonic, then a jet is always formed, and if it is supersonic, then a
jet is formed when B>Bmax and is absent when < By This criterion is refined and supplemented in [11].
It is shown that it is applicable not only to colliding plates but also to conical shells. In addition, it has been
establighed experimentally and by numerical calculations that the jets formed are monolithic in the case of a
subsoni ¢ velocity of the incoming stream, but they are not compact for a supersonic velocity when 8> By 4,
and they break up into individual small particles.

One can generalize the criterion of jet formation if one changes to the laboratory coordinate system. In
the general case if the phase velocity of the collision point of the shell elements on the symmetry axis is less
than the local speed of sound in the vicinity of the collision point (and perturbations can depart in front of the
shell), then a collision occurs with the formation of a jet. In the opposite case jet formation does not occur.
This criterion is valid both for the plane and axisymmetric cases of collision.

One can see that in the case of one~dimensional collapse of cylindrical shells (it is realized in the device
of Fig. 7) the velocity of the collision point of shell elements along the symmetry axis is equal to infinity and
there should be no cumulative jets formed at all from this part of the cylindrical shell. Nevertheless, results
are given in [12] on the production of cumulative jets of ultrahigh velocity (up to 90 km/sec) from cylindrical
shells. The maximum velocities attained depend on the shell material and the diameters of the shell and
charge. In addition, the formation of two jets was observed: a high-velocity one and the main one. The den-
sity of the high-velocity jet turns out to be of the order of 107 ~10~3 g/cm? [12, 13]. The gaseous nature of
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the material of the high-velocity jet suggests that vaporization of material occurs as a result of the strong
heating of the shell in the collapse process. The vaporized material of the inner shell layers flows out freely
along the symmetry axis right up until complete collapse and forms the high-velocity jet. The main jet is
evidently produced by virtue of an edge effect (see Fig. 7c) in the case of a supersonic velocity of the incoming
stream when 3> 8. Itis a stream of the smallest metal particles {12, 13], which is in good agreement with
the refined criterion of jet formation [11]. A third jet is formed from the lowest tube elements (see Fig. 7d)
with a density equal to the density of the material, and this jet is capable of damaging an obstacle. It is formed
in the case of a subsonic velocity of the incoming stream [10]. The velocity measured for the leading elements
of thig jet turns out to be equal to 9.7 km/sec (see Fig. 7d).

An attempt is made in [13, 14] to discuss the high-velocity and main cumulative jets as the outflow of a
highly compressed metal into a vacuum.
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