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The process  of the collapse of a cylindrical metal shell to the axis of symmetry  under the action of 
explosion products has been discussed in [1-3]. The model of an ideal incompressible fluid has been taken as 
the basis for calculations of a collapsing shell. Comparison of the resul ts  of a numerical solution of the 
problem of the convergence of ideal incompressible fluid to the axis of the shell with experimental data obtained 
in connection with photography by an x - r ay  pulse apparatus of the collapse process  of metal tubes surrounded 
by a layer of explosives shows that the calculated curves of the time dependence of the shell radius a re  in 
good agreement  with the experimental t imes up to a certain point. An appreciable divergence begins at the 
end of the process  of shell collapse. The divergence with experiment was overcome by using the model of a 
viscous incompressible fluid for the shell material .  In addition, this model explained a number of physical 
effects which were first  obtained experimentally: the halting of the shell upon reaching an inner surface of 
some crit ical radius not equal to zero, the "explosive" vaporization of the shell due to the rapid conversion 
of all the kinetic energy of the shell into heat due to the action of viscous forces,  and the dynamical stability 
loss of the shell. The elastoplastic model is not able to explain these phenomena which accompany the collapse 
process  of a cylindrical shell. 

Thus, the viscosi ty of actual shells is evidently the principal factor limiting accumulation (in the sense 
o f a  collision of the inner surface on the symmetry  axis) in shells with cylindrical symmetry.  But at the same 
time it  is possible to speak of another kind of accumulation in the model discussed below - the accumulation 
of thermal energy in the layers  adjacent to the inner surface, which, in turn, is limited by phase transitions 
of the shell material .  A procedure for determining the viscosity coefficients for metal and other condensed 
materials  is proposed on the basis of an analysis of the inertial  convergence of a cylindrical shell. 

A suggestion is made in this paper on the nature of the high-velocity cumulative jet from cylindrical 
cumulative casings and about the converging cylindrical detonation front. 

w 1. Let there be a cylindrical shell of a viscous incompressible fluid surrounded by a layer  of com- 
pressed gas. The initial parameters  of the gas are  as follows: p ressure  P0, density P0, sound velocity in the 
gas a 0, and layer  thickness A0; those of the shell a re  as follows: density of the material  Pl, dynamic viscosity 
coefficient ~, inner radius R0, and outer radius Rio. There is a vacuum inside and outside the layer of com- 
pressed gas. The shell will s tar t  to collapse under the influence of the expanding gas. 

Assuming that the gas surrounding the cylindrical shell is the product of the instantaneous detonation 
of explosives with 7 =3, it is possible to write [1-4]: 

i o I ( i . i )  P0 ~ ~- Po D- = -~- P0 a2' P0 ---- PexpF 

where D is the detonation velocity of the explosives and Pexpl is the initial density of the explosives. 

The condition of adiabaticity gives the following relationship for the thermodynamic parameters  of the 
gas: 

p = p0a/ao, p = po(P/po) 8 = po(a/ao) ~. (1.2) 

The equations of motion and continuity describing the one-dimensional motion of the gas with cylindrical 
symmetry a re  t ransformed,  with Eqs. (1.2) taken into account, into equations containing the mass velocity u 
and the speed of sound a as the desired functions: 

Ou/Ot ~ uOu/Or ~ aOa/Or = O, On~Or W uOa/Or ~ aOu/Or u u au/r  = 0. (1.3) 
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Let us consider  the r - t  d iagram of the collapse p roces s  of a cylindrical  shell (Fig. 1). The t ra jec tory  
of the inner  and outer shell boundaries a re  denoted by R(t) and Rl(t) , respect ively ,  Xl(t) is the leading front of 
a rarefact ion wave propagating to the left f rom the g a s - v a c u u m  boundary, and X2(t) is the leading front of a 
ra re fac t ion  wave propagating to the right and ar is ing on the moving shell. The curves X 1 and X 2 have rec t i -  
l inear sect ions up to their  intersect ion point[R10 + 50/2  , A0/(2a0) ]. The r axis and the rec t i l inear  sections 
of the curves  X t and X 2 r e s t r i c t  the region 0 of unperturbed gas, where u=0 and a =a 0. The g a s - v a c u u m  
boundary X3(t) is a s traight  line, since not a single perturbation can overtake this boundary (for example, see 
[5]). The displacement  veloci ty of this boundary is equal to the gas outflow veloci ty  into the vacuum, which 
for T =3 is equal to the initial speed of sound in the gas.  Thus, the region of moving gas in the r - t  d iagram 
is r e s t r i c t ed  by the shell line Rl(t) , the rec t i l inear  sections of the leading fronts of the rarefac t ion  waves X 1 
and Xz, and by the line X 3 of gas dispersion into the vacuum. In its turn, this region can be divided into 
severa l  pa r t s  [see Fig.  1]: 1) the region of gas motion in the rarefac t ion  wave which a r i s e s  on the cylindrical  
shell; 2) the region of gas  motion in the rarefac t ion  wave whid~ a r i s e s  in connection with gas dispers ion into 
the vacuum; 3) the region of interaction of the rarefact ion waves generated.  The region 3 is divided into two 
par t s  by the ~ine X0(t): to the left of it (region 3') the gas veloci ty is directed toward the shell, and to the r ight  
(region 3"), the gas veloci ty  is directed toward the g a s - v a c u u m  boundary. The mass  veloci ty of the gas is 
equal to zero  on the line X 0. 

For  the cyl indrical  shell i t se l f  re la t ions express ing the law of mass  conservat ion and the continuity 
equation for an incompress ib le  fluid a re  satisfied: 

R~ (t) -- B ~ (t) = R~o -- R0 2 = C = const; 

R~(t)tt~(t) = R(t)R(t) = rv. 

The initial conditions a re  obvious: 

u(r, O) = Try(O) = O, a(r, O) = ao, RI(O) = Rio,  R(0) = Ro, Xa(0) = Rio -{-A o. 

(1.4') 

(1.4") 

(1.5) 
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Let  us wr i te  out the conditions at  the boundary of the region of moving gas:  

1 X 3(t), u = a  0, a = 0 ;  
at Xl(t), Xo.(t) for O ~ t ~ - ~ A ~  ~ = 0 ,  a = a o ;  (1.6) 

t Rl(t). u = R 1 ,  a = a  1. 

In addition, a re la t ion  re la t ing  the acce l e r a t i on  of the shell  to the p a r a m e t e r s  of the shell  and the gas  is  
sa t i s f ied  on Rl(t) which i t  i s  poss ib le  to der ive  f rom energy  cons idera t ions .  

Let  us consider  the conserva t ion  law of mechanica l  ene rgy  for  some volume V of a continuous medium,  
which in the genera l  case  has  the fo rm 

V V S 

where  p+ i s  the densi ty  of the medium,  v i i s  the ve loc i ty  v e c t o r  of a m a t e r i a l  point, Dij i s  the tensor  of the 
de format ion  r a t e s ,  +i j  i s  the s t r e s s  t en so r ,  S is  the sur face  bounding the volume V, and ti (n) =+j inj  is  the 
s t r e s s  v e c t o r  a t  the smal l  a r e a  dS with n o r m a l  n. 

Equation (1.7) e s t ab l i shes  a re la t ion  between the ra te  of var ia t ion  of the total  mechanica l  energy  of the 
med ium and the s t rength  of the su r face  fo rces .  Let  us apply Eq. (1.7) to the one-d imens iona l  a x i s y m m e t r i c  
motion of a csrlindrical shell  converging to the axis  under  the influence of the gas p r e s s u r e  p on the outer  
su r face  of the shel l  (the gas  p r e s s u r e  on the inner  su r face  i s  p = 0). The shell  i s  an i ncompres s ib l e  Newtonian 
fluid for  whirls: 
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z u  = - -P~u + 2p~Du. 

In the case of cyl indrical  s y m m e t r y  D r r = S v / a r ,  D q q = v / r ,  and the remaining Dij = 0. In addition, D i ~ j i  = 
-PDi i  + 2gDijDij = 2~DijDij, s ince Dii = 0 by v i r tue  of p ~ = coast  and the continuity equation (1.4~). With the 
continuity equation (1.4 ~) taken into account  we have 

D~c;~ = 2~ [(Or~Or) ~ + (v/r) ~ ] = 4lzR~R~/r ~. (1.8) 

Then Eq. (1.7) for  unit length of the shell with (1.4 ~) taken into account,  takes the form 

d [ ~ p l  (R/~) ~ In ~_~z] 4_ 4,a.~C/~Z = _ 2nRt~p, (1.9) 

where  C = R ] - R  2 = coast.  

Different iat ing the f i r s t  t e r m  of Eq. (1.9) with r e sp ec t  to the t ime and using Eqs.  (1.1) and (1.2), we 
finally obtain 

d---V = s ,  ln----~--, \ 2R, R~R~ a o , ~ . / -  
R 

where  v = # / P l  is  the k inemat ic  v iscosi ty .  Equation (1.10) is the boundary condition for the region of moving 
gas and is  sa t isf ied on the curve Rl(t). 

The solution of the equations of one-dimensional  motion of  a gas with cyl indrical  s y m m e t r y  (1.3) with 
the initial  (1.5) and boundary conditions (1.C),  (1.4~), (1.6), and (1.10) was const ructed  numer ica l ly  by the 
modified method of cha rac t e r i s t i c s  descr ibed  in [1-3]. The ag reement  of  the calculated curves  of the t ime 
dependence of the radius  of the cyl indr ical  shell  with the exper imenta l  r e su l t s  was achieved by the choice of 
the value of the k inemat ic  v i scos i ty  of the shell  mater ia l .  For  copper  the value of the k inemat ic  v i scos i ty  
turned out to be equal to v = 0.7.104 cm~/sec,  which is  l ess  than the kinemat ic  v i scos i ty  cited in [6]. 

The calculated dependences of the radius  of a collapsing copper cyl indr ical  shell (R 0 = 9 mm, Rio = 11. 7 
a m ,  and p l  = 8.9 g / e m  3) under  the action of a l a y e r  of explosives - an alloy of Tro ty t  with Hexogen, TH 50/50 
(Pexpl = 1.65 g / c a  "~, D = 7.5 k m / s e c ,  and a 0 = 4.5 km/sec )  a r e  p resen ted  in Fig. 2. The solid curves  a re  plotted 
for  a v iscous  shel l  with v = 0.7" 104 cm~/sec,  and the dashed curves  are  for  the model  of an ideal  i n c o m p r e s s -  
ible fluid (v=0).  The curves  1-3 r e f e r  to di f ferent  th icknesses  of the explosives  on the outer  surface  of the 
cyl indr ical  shell  (A 0 = 8.2, 5.9, and 2.4 mm, respect ively) .  The exper imenta l  resu l t s  a r e  plotted as  points.  
The good overlapping of the exper imenta l  points by the calculated curves  over  the ent i re  collapse p roces s  
for  the chosen kinemat ic  v i scos i ty  coefficient  and the appreciable  d i screpancy  of the exper imenta l  points 
with the model  of an ideal  i ncompress ib l e  fluid at  the end  of the p r o c e s s  a rgue  in favor of the v iscous  incom-  
p res s ib l e  fluid model.  

2. Let  us consider  the iner t ia l  collapse of a v iscous  cyl indr ical  shell  in which the gas p r e s s u r e  both 
on the outer  and on the inner shell  su r faces  is  equal to ze ro ,  and R =R0, R l=Ri0, and ~t =~t 0 at  t=0 .  In this 
case  f rom Eq. (1.9) we have 

d [nO, (R/~)~ln -~--1 4nptvCR' (2.1) 
d-7 = R~ ' 

where  E =wpl(RR)21n (R1/R) is  the kinetic energy  per  unit length of the cyl indr ical  shell ,  

Integrat ing (2.1) on the condition that E =E 0 at  R=R0 ,  we obtain 

- 

"11 
- r i n  ~o)" 

( 2 . 2 )  

Equation (2.2) indicates that R=R, # 0 occurs wtten E = 0: 

R ,  = R o -~ / (RI~ / / I~  t ( 2 . 3 )  
7t~ ~/ (R~o/Ro) -- i 

where m = 211 + ~ ) ] 2  = 211 + ( 7 ) ]  2. The stopping radius R ,  o f  the shell  at a cer ta in  distance 

f rom the s y m m e t r y  axis  i s  v e r y  small  in the genera l  case upon detonation of the explos ives  in contact  with 
the shell  due to a v e r y  s trong dependence on the Reynolds number,  which is  defined in the fo rm  Re = Ro[R0[/v. 
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Actual ly,  the stopping rad ius  i s  found to be equal  to ~ 10 - u  cm for a copper  shell  (v=0.7  �9 104 cm2/sec)  with an 
inner  rad ius  of 50 m m  and a th ickness  of  5"~nm in the case  of an init ial  col lapse ve loc i ty  of R0 = 1 k m / s e c .  I t  
is  c l ea r  that :it i s  imposs ib le  to detect  such a value by any ins t rumen ta l  m e a s u r e m e n t s .  But the stopping 
rad ius  R ,  nuty p rove  to be app rec i ab l e  for  cyl indr ica l  shel ls  for which Re-*0 .  I f  we now take a copper  shell  
having the s a m e  ini t ia l  col lapse  ve loc i ty  of 1 k m / s e c  but a th ickness  of 0.5 m m  and R 0 = 5 m m ,  then R ,  turns  
out to be equal  to 1.23 m m ,  and i t  i s  poss ib le  to r e c o r d  it by x - r a y  pulse  photography.  

I t  can be shown that  i f  t he re  a r e  d iss ipa t ive  fo rces  in the shell ,  then it  i s  poss ib le  to obtain the stopping 
effect  by the act ion,  for  example ,  of the r e s i s t i v e  fo rces  of the shell  ma te r i a l .  The case  of the iner t ia l  con- 
ve rgence  of an e l a s top las t i c  cyl indr ica l  shel l  toward  the s y m m e t r y  axis  has  been theore t ica l ly  inves t igated in 
[7], and a m i n i m u m  ini t ial  ve loc i ty  ~t0, ,  has  been found at  which the shel l  co l lapses .  The init ial  ve loci ty  ~t0, 
t u rns  out to be equal to 160 m / s e e  for  a copper  cyl inder  with R0=9 m m  and RI0 = 10 m m  whose yie ld  point i s  
~s  = 6.85 �9 108 d y n / c m  2. In the case  of the explos ive  squeezing of a copper  shell  a t  an ini t ial  ve loci ty  ~0 of the 
o r d e r  of 1 k m / s e c  and higher,  the e l a s top la s t i c  model  is  not able to explain the stopping effect .  The loss  of 
ene rgy  in ove rcoming  the p las t i c  r e s i s t a n c e  of the m a t e r i a l  amounts  to 2.5% in al l  of the ini t ial  kinet ic  energy  
of the shel l  in the case  of R0= 1 k m / s e c .  

I t  i s  poss ib le  to t r e a t  the ine r t i a l  col lapse  of an empty  spher i ca l  cavity of rad ius  R 0 in an unbounded 
i n c o m p r e s s i b l e  v i scous  fluid in a s i m i l a r  formulat ion.  In this case the continuity equation has  the fo rm v = 
~tR2/r 2, and the components  of the deformat ion  ra te  t ensor  D r r = 0 v / 0 r ,  D g ~  =Do0 =v/r, and the remain ing  
Dij =0 and Di jcrji = 2~DijDij = 12~R2R4/r% T h e r e f o r e ,  one can wr i te  Eq. (1.7) in the fo rm 

dE/dt =- --t6.n p~2R, (2.4) 

where  E= 27rplR3R ~ is  the to ta l  kinet ic  energy.  El iminat ing the t ime and in tegra t ing (2.4) with the obvious 
init ial  conditions, we obtain 

V-E  = V-Eo - 8~,V 2 - - ~ ( V ~  - V ~ )  (2.~) 

In the case  of  ine r t i a l  convergence  to the center  of the spher ica l  cavity both col lapse to zero  radius  and 
the stopping of the cavi ty  at a cer ta in  d is tance  f rom the center  can occur  in a v i scous  fluid. This  depends on 
the init ial  conditions. Le t  us  find the function R(t) f r o m  Eq. (2.5) in quadra tu res  

i B3/2dB (2.6) 

We will c o n s i d e r  th ree  cases :  1) R0R 0 + 8v= 0, i .e . ,  Re=R0[R0] /v=8;  then we obtain R02-R 2= 16vt f rom (2.6), 
whence i t  follows that  the cavity co l lapses  to ze ro  radius  in the finite t ime  t ,  =R~/16v, and Q - - 0 ,  R = -8v /R- -*  
- % a n d  E = 1281rplvZR--0 as  R - - 0 ;  2) RoR0+ 8v>0,  i .e . ,  R e <  8; then we obtain f r o m  (2.6) that  the denominator  
of the in tegrand is  l e s s  than ze ro  when R ~ R0, and it  is  g r e a t e r  than zero  when R - - 0 ;  th is  fact  indicates  that  
for R ,  = (1-Re/8)~R0 the moving cavity s tops ,  E= 0, and the stopping t ime  is  equal to infinity; 3) R0~0+ By< 0, 
i .e . ,  R e >  8; then the denomina tor  of the in tegrand of Eq. (2.6) is  negative during the en t i re  t ime  of the con- 
v e r g e n c e  of the cavi ty ,  col lapse  occu r s ,  and E = 2zrpiv2(Re-8)2R 0 and 1~ ~ R - 3 / 2 - * - ~  as  R--*0, just  as  in an ideal 
i ncompres s ib l e  fluid. 

The p r o b l e m  of the col lapse  of a spher i ca l  bubble in a v i scous  liquid has  been d i scussed  in a somewhat  
different  formula t ion  in [8]. H e r e  the p r e s s u r e  P0 under  whose influence col lapse of  the cavity occu r s  is  
spec i f ied  a t  infinity,  i .e . ,  in a formula t ion  s i m i l a r  to R a y l e i g h ' s  p r o b l e m  of the col lapse  of a spher ica l  cavity 
in an ideal  i n c o m p r e s s i b l e  fluid. I t  i s  a l so  found in [8] that the nature  of the motion depends on the value of 

the  Reynolds  number ,  which is  now defined a s  Re ---- R---~ ]/fP~-~ -. When R e > R e * ,  where  Re* is  some cr i t ica l  
~' r p l  

number ,  col lapse  occu r s ,  and the ve loc i ty  of tile cavi ty  boundary k ~ - ~ o  as  R--~0 according  to the same  law as  
in R a y l e i g h ' s  p rob l em.  When R e <  R e * ,  the col lapse  of the bubble occu r s  slowly in an infinite t ime.  In the 
in te rmedia t~  case  when Re = R e * ,  the bubble co l lapses  in a finite t ime ,  and the veloci ty  R grows without l imi t  
a s  R--~0, but m o r e  weakly  than R -1. Numer i ca l  in tegrat ion of the equations in [8] g ives  a value of Re* = 8.4 for 
the c r i t i ca l  :Reynolds number .  

And so  in con t ra s t  to mot ion with cent ra l  s y m m e t r y ,  col lapse to ze ro  rad ius  never  occurs  in the case  of 
the ine r t i a l  motion of a cyl indr ica l  shel l  of v i scous  fluid. I t  i s  a l so  evident f r o m  Eq. (1.9) that  i f  the p r e s s u r e  
of  the detonation p roduc t s  which ac t s  on the outer  su r face  of the shell  drops  to zero  in a finite t ime,  then 
col lapse  of the shel l  does  not occur  - i t  i s  stopped, and the i n n e r  su r face  of the shell  neve r  r e aches  the axis .  
Thus ,  the  v i s c o s i t y  of the m a t e r i a l  of actual  shel ls  can be the pr inc ipa l  cause,  complete ly  el iminat ing accumu-  
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lation in dev ices  with cyl indr ical  s y m m e t r y .  This  fact mus t  be taken into account  in a number  of physical  
devices  which use  the effect  of the col lapse of  cyl indrical  shel ls  (for example ,  magnet ic  course  g e n e r a t o r s  
and so on). 

E x p e r i m e n t a l  ver i f ica t ion  of the stopping of the cyl indrical  shell  at  a ce r ta in  d is tance  f r o m  the s y m m e t r y  
axis  in the case of explos ive  squeezing was c a r r i e d  out with x - r a y  pulse equipment.  Copper  tubes sur rounded  
on the outside by a l aye r  of exp los ives  (TH 50/50 alloy) were  used in the expe r imen t s .  The detonation wave 
s l ips  along the outer  su r face  of the shell .  Due to the l a rge  d i f ference  in the ve loc i t i e s  of the detonation wave 
(7.5 k m / s e c )  and the r ad ia l  col lapse  (0.5-1.5 k m / s e c )  one can consider  the col lapse  p r o c e s s  of the tube to be 
one-d imens iona l  with cyl indr ica l  s y m m e t r y  to high accu racy .  The use of a sliding detonation wave p e r m i t s  
record ing  in a single f r a m e  v a r i o u s  t e m p o r a l  s t ages  of  the col lapse of the cyl indr ical  shel l .  

I f  one conver t s  to a coordinate  s y s t e m  at tached to the f ront  of the detonation wave,  then it i s  c l ea r  that 
the c r o s s  sec t ions  of the tube f a r t he r  f r o m  it  will  be in l a t e r  s tages  of col lapse ,  s ince t = x / D ,  where  x i s  the 
d i s tance  f r o m  the detonation wave front  to the tube c r o s s  sect ion in quest ion and D is  the ve loc i ty  of  the 
detonation wave.  The use  of this p r o c e d u r e  p e r m i t t e d  c lea r  r ecord ing  in the expe r imen t s  of the stopping of 
the inner  su r face  of the shel l  a t  a ce r t a in  dis tance f r o m  the axis  of s y m m e t r y .  

The  col lapse  p r o c e s s  of a copper  tube (R0= 9 ram,  R10 = 10 ram) under  the act ion of a l ayer  of exp los ives  
i s  p r e sen t ed  in Fig. 3a, b; the detonation wave front  i s  moving f rom above to below. The x - r a y  photographs  
of the col lapse p r o c e s s  o f  the tube in Fig. 3a d i f fer  f r o m  the x - r a y  photographs of Fig.  3b in that  in the f i r s t  
case  an e a r l i e r  R a g e  of the col lapse  is  p r e sen t ed  and with a s m a l l e r  ini t ial  ve loc i ty  (1R0~ 1 k m / s e c )  than in 
the second case  (R 0 ~ 1.6 k m / s e c ) .  The t imes  a r e  m e a s u r e d  f rom the ins tant  the explos ives  a r e  f i red  by a 
detonator  and a r e  8.7 and 14.3 /~sec, r e spec t ive ly ,  for  the f i r s t  and second f r a m e s  of Fig.  3a and 13.4, 16.3, 
23.2, and 33.5/~sec for  the sequence of f r a m e s  of Fig. 3b. I t  i s  evident in the second f r a m e  of Fig. 3a and 
the f i r s t  f r a m e  of Fig.  3b that  the tube, having a t ta ined a min imum inner  rad ius  not equal  to zero at  some 
c r o s s  sect ion,  then expands.  D i s p e r s a l  of the shell  s t a r t s  in the next f r a m e s  of Fig. 3b a f t e r  the s tage with 
min imum radius ,  and in the l a t e r  f r a m e s  the  d i s p e r s a l  i s  accompan ied  by f r ac tu re ,  loss  of continuity, and 
the appea rance  of ins tab i l i t i es  whid~ d i s to r t  the a x i s y m m e t r i e  shape  of the d i spers ing  shell .  

Str iving to obtain a stopping rad ius  R ,  l a rge  enough for  high m e a s u r e m e n t  a c c u r a c y  i m p o s e s  a r e s t r i c -  
t ion on the Reynolds  number  Re=R01~t01/v. F o r  example ,  for  shel ls  for  which Rio "+ 1.1 R 0' i t  follows f r o m  
Eq. (2.3) that  one should have R e -  < 20 i f  i t  i s  n e c e s s a r y  to have  a stopping radius  of the inner  su r face  of the 
o rde r  of  0.1 R 0. One can de te rmine  the v i s c o s i t y  of  me ta l s  and o ther  condensed m a t e r i a l s  f r o m  Eq. (2.3) and 
m e a s u r e m e n t s  on photographs  (see Fig.  3a, b) of  the ini t ial  ve loc i ty  R0 and the inner  stopping radius  R ,  : 

In / "'1o-- "'o+ t 

R+I~ot ~ R2+ - 1  
v =  4 2 in R/~0 ~ 

F o r  copper  at  de format ion  r a t e s  of ~ 10 s sec  -1 the value of the k inemat ic  v i s c o s i t y  coefficient  i s  found to be 
equal to (1.5-1.8) �9 10 4 cm~/see ,  which exceeds  the value of the k inemat ic  v i scos i ty  f r o m  the solution of the 
p r o b l e m  of explos ive  squeezing of a cyl indr ical  shel l .  The r e a s o n  for  this d i sc repancy  evidently cons i s t s  of 
the fact  that al l  the kinet ic  energy  changes into heat  by the ins tant  of stopping. The shell  l a y e r s  adjacent  to 
the inner  su r face  a r e  hea ted  espec ia l ly  s t rongly.  Vapor iza t ion  and d i spe r s ion  of the inner  l a y e r s  by the axis  
can begin just  before  the i r  stopping, and the stopping rad ius  r e co rded  on the x - r a y  photograph will have an 
exaggera ted  value.  The  inner  channel f requent ly  tu rns  out to be smea red .  

~3. Heat ing up of a v i scous  cyl indr ica l  shell  occu r s  upon i t s  col lapse  to the axis  as  a r e su l t  of the 
d iss ipat ion of kinet ic  energy.  

Dependences  obtained f r o m  (2.2) a r e  p r e s e n t e d  in Fig. 4 of the d imens ion less  quant i t ies  - ve loc i ty  of the 
inner  rad ius  R/I~ 0 and the kinet ic  energy  E / E  0 - a s  a function of the d imens ion les s  inner  rad ius  R / R  0 for a 
copper  shell  for  which R 0 = 9 m m ,  R10 = 11.7 m m ,  and v = 0.7" 104 cm2/sec .  Curves  3 co r re spond  to an ini t ial  
ve loc i ty  R0= 1 k m / s e c ,  cu rves  2 to ~t0= 2 k m / s e c ,  and curves  1 to ~t0=3 k m / s e c .  I t  follows f r o m  considera t ion  
of these  curves  that  the f rac t ion  of the kinetic ene rgy  conver ted  into hea t  i s  smal l  r ight  up to va lues  R / R  0 = 
0.5-0.7,  and the col lapse ve loc i ty  is  a l m o s t  unchanged and equal to the ini t ial  value.  Significant l ibera t ion  of 
hea t  i s  obse rved  p r i o r  to the  s tage of shel l  stopping, and a l l  the kinet ic  energy  changes into heat  a t  the ins tant  

of  stopping. 
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Let  us e s t ima t e  the t e m p e r a t u r e  and i t s  dis t r ibut ion with r e s p e c t  to shell  th ickness  as  a function of the 
t ime .  We will again  consider  ine r t i a l  motion.  We obtain f rom Eq. (2.2) the equation of mot ion for the inner 
rad ius  R of the shell :  

Rot~ o ,',l/ln B'~ -~ 4v( ~ l ~ - -  1-  1//r ln-~o ) (3.1) 
k= 

"V% 
The s t rength  of the d iss ipa t ion  fo rces  pe r  unit  vo lume is ,  accord ing  to (1.8), 

ds '  . R ~ "  (3.2) N = - - ~ - :  ~t--~- ' 

where  r i s  the independent v a r i a b l e  ( R -  r<--Rt) and e ' i s  the diss ipat ion ene rgy  per  unit vo lume.  We will 
follow a pa r t i c l e  located in the i n t e r i o r  of the cyl indr ical  shell  and having an init ial  r ad ius  r0(R0 "~ r0~R10). 
I t  follows f r o m  the m a s s  conserva t ion  law (1.4') that  r2(t) =R2(t)+ 2_ 2 r 0 R0, and Eq. (3.27 for a moving par t i c le  
with ini t ial  coordinate  r 0 t akes  the f o r m  

d-t-8 "= 4v R~:~ (3.3) 
dt  ( R~ + r 2 - -  R 2 ) 2 '  

where  e is  the spec i f i c  d iss ipa t ion  ene rgy  conver ted  into heat ,  and e =0 in Eq. (3.3) at  t = 0 .  In tegra t ing (3.1) 
and (3.3) toge ther ,  we find the t e m p e r a t u r e  i n c r e m e n t  in the adiabat ic  approx imat ion  for  the par t i c le  r 0 to be 

t 

c ~"o ( R~-I-,2 . 2 ~  ' "0 - -  " ' 01  

where  c i s  the  spec i f ic  hea t  of the shel l  m a t e r i a l .  

F o r  n u m e r i c a l  calculat ion the shell  was  divided into 10 equal i n t e rva l s  with r e s p e c t  to th ickness  at  the 
ini t ial  t ime .  Thus ,  the calculat ion was p e r f o r m e d  for  11 points ,  two of which belong to the inner  and outer  
s u r f a c e s  of  the shell .  The calcula t ions  of the t e m p e r a t u r e  distr ibution in the shell  (without taking phase  
t r ans i t ions  into account) were  p e r f o r m e d  for  copper ,  with v =0.7"  104 cm2/sec  and c =3.82" 106 e r g s / ( g  "deg). 

The r e s u l t s  of  the calculation of the t e m p e r a t u r e  dis t r ibut ion in a copper  shell  with r e s p e c t  to i t s  th ick-  
hess  i s  shown a t v a r i o u s  t i m e s  in Fig. 5. The init ial  shell  p a r a m e t e r s  a r e  as  fellows: R0= 10 ram, Rio= 11 mm,  
and 1~ 0 = 1 k m / s e c .  

The t e m p e r a t u r e  dis t r ibut ion with r e s p e c t  to th ickness  of a copper  shell  (R 0 =9 m m ,  R10 = 11.7 mm) is  
given in Fig.  6 at  the ins tant  at  which the inner  su r face  of the shell  a t ta ins  a rad ius  of 1 m m ;  the curves  r e f e r  
to di f ferent  ini t ial  shell  ve loc i t i e s  and to d i f ferent  t imes .  The t e m p e r a t u r e  va lues  obtained a r e  r a t he r  high, 
and the t e m p e r a t u r e  of the inner  su r face  and the shell  l a y e r s  adjacent  to it  will  be st i l l  h igher  by the stopping 
t ime  in the v i scous  fluid model  used  he re .  I f  one compa re s  F igs .  4 and 6 (both a r e  for  a shell  with R 0 = 9 m m  
and R10 = 11.7 ram),  then by the t ime  the inner  rad ius  of  the shel l  a t ta ins  a radius  of 1 m m  the ~ r ap id  n shell  
has  m o r e  than 60% of i t s  k inet ic  ene rgy  left ,  and the other  two have 50?o and about 207o. 

The calculat ion of the t e m p e r a t u r e  of  the inner  su r face  of the nslowW shell/% 0 = 1 k m / s e c ,  which is  
c a r r i e d  out to a rad ius  R = 0.0715 ram,  which is  a l m o s t  equal to the stopping r ad ius  R ,  = 0.0708 ram, shows 
that  the t e m p e r a t u r e  r i s e s  to 13.4 �9 104 ~ at  the t ime  t = 8.16/~ sec,  and the ve loc i ty  of the inner  sur face  is  
equal to 40 m / s e c  at  th is  t ime .  A t e m p e r a t u r e  of s eve ra l  tens  of thousands of deg rees ,  for  example ,  i s  
a t ta ined in condensed media  only upon the p a s s a g e  of v e r y  s t rong shock waves .  In the case of shock com-  
p r e s s i o n  of lead by a fac tor  of 2.2 the m a t e r i a l  behind the front  i s  hea ted  up to a t e m p e r a t u r e  of 26,400~ [5], 
the p r e s s u r e  behind the shock f ront  i s  h igher  than 4 �9 103 kbar ,  and the t h e r m a l  p r e s s u r e  amounts  to 32% of the 
total .  

Let  us imagine  the o r d e r  of  magni tude of the t h e r m a l  p r e s s u r e  i f  heat ing of a copper  shell  t akes  p lace  
with constant  vo lume,  which is  va l id ,  s ince a heating up b y A T = 3 . 4 "  104~ occu r s  during a t ime apprec iab ly  
l e s s  than 2 # s e c  (see Fig.  6). We will use  the re la t ionship  which r e l a t e s  the value of the t he rma l  p r e s s u r e  to 
the t h e r m a l  energy:  

PT --- P(V)$T/V  = P ( v ) c v T / v  ~ ,  F ( v l ) c v T / v  D 

where  F is  the Grune isen  coefficient ,  ev i s  the speci f ic  hea t  at  constant  vo lume,  and v l = l / p l  i s  the specif ic  
vo lume under  normal  conditions. F o r  copper  a t  T = 3 . 4 - 1 0 4 ~  the value of the p r e s s u r e  t u rn s  out to be h igher  
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than 3 �9 103 kbar. Such high p ressures  create a shock wave in the shell material  which propagates toward the 
outer layers  and forces the shell to expand. Of course, the model under discussion cannot take account of 
all the complexities of the convergence process  of actual metal shells toward the axis, but a number of physical 
effects described above are  qualitatively explained. 

The process  of one-dimensional convergence of shells with cylindrical symmetry  has been real ized 
experimentally in the device shown in Fig. 7a. The cylindrical shell 6 being investigated (R10=10.5 ram) 
surrcunded by a layer  5 of TH 50/50 explosive material  5 mm thick was enclosed in a conical Duralumin 
generator  4, which excited a cylindrical detonation wave simultaneously over the entire surface of the explo- 
sives 5 along a length of 60 mm. The firing of the explosive layer  3, which accelerates  the generator,  is 
carr ied out by the detonator 1. Separation of the explosives away from the detonator towards the explosives 
layer 3 is carr ied out by means of an explosive layer  surrounding the inert  inser t  2 made of a plastic cone 
and a steel disk in the base of the cone. The process  of the collapse and dispersion of a copper tube (R0=10 
ram) is shown in Fig. 7. The initial velocity is of the order  of 1.7-2 km/sec .  The t imes are  measured from 
the instant of firing and are  13, 19, 21, and 27 #sec  for the sequence of f rames shown. 

A photograph is  shown in Fig. 8 of the dispersion of a thicker i ron tube (R0=9.5 mm) 27#sec  after  the 
device shown in Fig. 7a was fired. The thinner copper tube disperses  into layers  perpendicular to the 
symmetry  axis by this time. The dome-shaped feature in Fig. 8 appeared due to an additional metal ring 
inser ted into the lower par t  of the tube for a complete guarantee of the free outflow of a i r  from the inner 
cavity during the process  of shell collapse. A loss of stability of the initial shape of the cylindrical shell is 
noted in the expansion stage in both photographs (see Figs. 7 and 8). One can assume that this stability loss 
of the shell shape is caused by a rapid heating of the metal at constant volume already in the collapse stage, 
as a resul t  of which axial forces appear which exceed the critical Eulerian force. Then the shell shape is 
determined by dynamic s ta~ l i ty  loss, v~hich was f irs t  analyzed in [9] for elastic rods and shells. 

Due to the unloading from the end surface of the explosives 5, which accelera tes  the shell being investi-  
gated, the collapse process  of the tube at some section is far from uniform with cylindrical symmetry.  The 
lower par~ of the tube of Fig. 7e and the upper par ts  of the tube of Fig. 3a, b collapse at some variable angle 
towards the symmetry  axis. At the same ~ n e  conditions for  the collision of shell elements may be realized,  
which resul ts  in the formation of cumulative jets.  We note that the ideal incompressible fluid model always 
predicts the formation of compact cumulative jets ,  whereas it  is known that jets are formed under definite 
collision conditions. It is necessary  to discuss the compressibil i ty of the shell mater ia l  in o rder  to clarify 
the cr i te r ion  for  jet  formation. The effect of compressibil i ty on the formation of a jet  is discussed in [10]. 
The flow pattern is the symmetrical  collision of two jets at an angle 2fl for  a glancing collision of two plates in 
the coordinate system attached to the line of collision of the plates.  It is known from gasdynamics that for  a 
s t ream impinging on a wall at an angle fi there exists a maximum angle fimax, which when exceeded results  in 
the absence of an associated shock wave. 

Thus, a flow without a cumulative jet is possible only when an associated shock wave is located at the 
point of collision. A cumulative jet  is always formed in the ease of an outgoing shock wave. This means that 
if  the velocity of the incoming s t ream is subsonic, then a jet  is  always formed, and if it  is  supersonic, then a 
jet is formed when fl >flmax and is absent when fl< flmax" This cri terion is refined and supplemented in [11]. 
It  is shown that it  is applicable not only to colliding plates but also to conical shells. In addition, it has been 
established experimentally and by numerical calculations that the jets formed are  monolithic in the case of a 
subsonic velocity of the incoming stream, but they are not compact for a supersonic velocity when/3 >flmax, 
and they break up into individual small particles,  

One can generalize the criterion of jet  formation if  one changes to the laboratory coordinate system. In 
the general case i f  the phase velocity of the collision point of the shell elements on the symmetry axis is less 
than the local speed of sound in the vicinity of the collision point (and perturbations can depart in front of the 
shell), then a collision occurs with the formation of a jet. In the opposite case jet  formation does not occur. 
This cri terion is valid both for the plane and axisyrnmetric cases of collision. 

One can see that in the case of one-dimensional collapse of cylindrical shells (it is real ized in the device 
of Fig. 7) the velocity of the collision point of shell elements along the symmetry  axis is equal to infinity and 
there should be no cumulative jets formed at all from this part  of the cylindrical shell. Nevertheless, results  
are given in [121 on the production of cumulative jets of ultrahigh velocity (up to 90 km/see) from cylindrical 
shells. The maximum velocit ies attained depend on the shell material  and the diameters of the shell and 
charge. In addition, the formation of two jets was observed: a high-velocity one and the main one. The den- 
sity of the high-velocity jet turns out to be of the order  of 10 -4 - 1 0  -3 g /cm ~ [12, 13]. The gaseous nature of 
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the material of the high-velocity jet suggests that vaporization of material occurs as a result  of the strong 
heating of the shell in the collapse process. The vaporized material of the inner shell layers flows out freely 
along the symmetry axis right up until complete collapse and forms the high-velocity jet. The main jet is 
evidently produced by virtue of an edge effect (see Fig. 7c) in the case of a supersonic velocity of the incoming 
stream when fl >flmax" It is a stream of the smallest metal particles [12, 13], which is in good agreement with 
the refined criterion of jet formation [11]. A third jet is formed from the lowest tube elements (see Fig. 7d) 
with a density equal to the density of the material,  and this jet is capable of damaging an obstacle. It is formed 
in the case of a subsonic velocity of the incoming stream [10]. The velocity measured for the leading elements 
of this jet turns out to be equal to 9.7 km/sec  (see Fig. 7d). 

An attempt is made in [13, 14] to discuss the high-velocity and main cumulative jets as the outflow of a 
highly compressed metal into a vacuum. 
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